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1 Overview

The main effort in the project has been directed tovNards the development of an integrated vision

system - the Vision Machine -, based on a parallel supercomputer. The core of the Vision Machine

is in fact a set of parallel aigorithms for visual recognition and navigation in an unstructured

en% ironment. The present % ersion of the Vision Machine has been demonstrated to process images

in close to real time, by

1. computing first several low-level cues, such as edges, stereo disparity, optical flow. color and

texture,

2. integrating them to extract a cartoon-like description of the scene in terms of the physical

discontinuities of surfaces,

3. using this cartoon in a recognition stage, based on parallel model matching.

In addition to the development of the parallel algorithms, their implementation and testing.we have

also done substantial work in several areas that are very closely related:

" design and fabrication of VLSI circuits - analog and digital - to transfer to potentially

cheap and very fast hardware some of the software algorithms of the Vision Machine,

* initial development of techniques to synthesize by learning vision algorithms or improve

them with the use of pertinent examples)

" several projects involvirg autonomous navigation of small robots, recognition techniques

and computation of salient contours.

In the following we will provide background information on all of these items. Additional details

can be found in the references cited.
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2 The Vision Machine

2.1 Introduction: The Vision Machine Project

Computer % ibion has de eloped algoritlhns for several early visioi, processes, such as edge detection.
stereopsis, motion, texture, and color, which give separate cues as to the distance from the viewer

of three-dimensional surfaces, their shape. and their material properties. Biological vision systems.
however, greatly outperform computer vision programs. It is clear that one of the keys to the

reliability, flexibility, and robustness of biological vision systems in unconstrained environments
is their ability to integrate many different visual cues. For this reason, we have developed and
continue to develope a Vision Machine system to explore the issue of integration of early 'iSiOIL

modules. The system also serves the purpose of developing parallel vision algorithms, since its
main computational engine is a parallel supercomputer, the Connection Machine.

The idea behind the Vision Machine is that the main goal of the integration stage is to compute
a map of the visible discontinuities in the scene, somewhat similar to a cartoon or a line-drawing.

There are several reasons for this. First, experience with existing model-based recognition algo-
rithms suggest that the critical problem in this type of recognition is to obtain a reasonably good
map of the scene in terms of features such as edges and corners. The map does not need to be per-

fect (human recognition works with noisy and occluded line drawings) and, of course, it cannot be.

But it should be significantly cleaner than the typical map provided by an edge detector. Second.
discontinuities of surface properties are the most important locations in a scene. Third, we have

argued that discontinuities are ideal for integrating information from different visual cues.

It is also clear that there are several differey E approaches to the problem of how to integrate visual

cues. Let us list some of the obvious possibilities:

1) There is no active integration of visual processes. Their individual outputs are "integrated"
at the stage at which they are used, for example by a na 'igation system. This is the approach

advocated by Brooks (1987). While it makes sense for automatic, insect-like, visuo-motor tasks
such as tracking a tai get or avoiding obstacles (e.g., the fly's visuo-motor system (Poggio and

Reichardt, 1976)), it seems quite unlikely for visual perception in the wide sense.

2) The visual modules are so tightly coupled that it is impossible to consider visual modules
as separate, even in a first order approximation. This view is unattractive on epistemological,

engineering and p"sychophysica ground .

3) The visual modules are coupled to each other and to the image data in a parallel fashion - each
process represented as an array coupled to the arrays associated with the other processes. This

point of view is in the tradition of Marr's 2 1-D sketch, and especially of the "intrins;c images" of
Barrow and Tenenbaum (1978). Our present scheme is of this type, and exploits the machinery of
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Markov Random Field (MRF) models.

4) Integration of different vision modalities is taking place in a task-dependent way at specific

locations - not over the whole image - and when it is needed - therefore not at all times. This

approach is suggested by psychophysical data on vibutl attention and by the idea of visual routines

(Ullman, 1984; see also Hurlbert and Poggio, 1986; Mahoney, 1986; Buelthoff and Mallot, 1987).

We have actively explored, in the framework of the contract Parallel Vision Algorithms, the third

of these approaches. We believe that the last two approaches are compatible with each other. In

particular, visual routines may operate on maps of discontinuities such as those delivered by the

present Vision Machine, and therefore be located after a parallel, automatic integration stage. In

real life, of course, it may be more a matter of coexistence. We believe, in fact, that a control

structure based on specific knowledge about the properties of the various modules, the specific

scene and the specific task will be needed in a later version of the Vision Machine to overview and

control the MRF integration stage itself and its parameters. It is possible that the integration stage

should be much more goal-diiected that what our present methods (MRF based) allow. The main

goal of our work is to find out whether this is true.

The Vision Machine project had a number of goals. It provided a focus for developing parallel

vision algorithms and for studying how to organize a real-time vision system on a massively parallel

supercomputer. It attempts to alter the usual paradigm of computer vision research over the past

years: choose a specific problem, -or example stereo, find an algorithm, and test it in isolation. The

Vision Machine has allowed us to develop and test an algorithm in the context of the other modules

and the requirements of the overall visual task, above all visual recognition. For this reason, the

project was more than an experiment in integration and parallel processing: it was and still is a

laboratory for our theories and algorithms.

Finally, the ultimate goal of the Vision Machine project is no less than the ultimate goal of vision

research: to build a vision system that achieves human-level performance.

2.2 The Vision Machine System

The overall organization of the system is shown in Figure 1. The image(s) are processed in parallel

through independent algorithms or modules corresponding to different visual cues. Edges are

extracted using Canny's edge detector. The stereo module computes disparity from the left and

right images. The motion module estimates an approximation of the optical flow from pairs of

images in a time sequence. The texture module computes texture attributes (such as density

and orientation of te:'tons (see Voorhees, 1987)). The color algorithm provides an estimate of

the spectral albedo of the surfaces, independently of the effective illumination, that is, illumination

gradients an I shading effects, as suggested by Hurlbert and Poggio (see Hrlbert and Poggio, 1985).

6



aInd

t t

Figure 1: Overall organization of the Vision Machine.

The measurements provided by the early vision modules are typically noisy, and possibly sparse
(for stereo and motion). They are smoothed and made dense by exploiting known constraints
within each process (for instance, that disparity is smooth). This is the stage of approximation and
restoration of data, performed using a Markov Random Field model. Simultaneously, discontinuities

are found in each cue. Prior knowledge of the behavior of discontinuities is exploited, for instance,
the fact that they are continuous lines, not isolated points. Detection of discontinuities is aided by
the information provided by brightness edges. Thus each cue, disparity, optical flow, texture, and
color, is coupled to the edges in brightness.

The full scheme involves finding the various types of physical discontinuities in the surfaces, depth
discontinuities (extremal edges and blades), orientation discontinuities specular edges, albedo edges
(or marks), and shadow edges, and coupling them with each other and back to the discontinuities in
the visual cues (as illustrated in Figure 1 and suggested by Geiger and Weinshall, 1988 and Gamble,
Geiger, Poggio and Weinshall, 1989). So far we have implemented only the coupling of brightness
edges to each of the cues provided by the early algorithm. As we will discuss later, the technique we
use to approximate, to simultaneously detect discontinuities, and to couple the different processes,
is based on MRF models. The output of the system is a set of labdled discontinuities of the
surfaces around the viewer. Thus the scheme - an instance of inverse optics - computes surface
properties, that is attributes of the physical world and not anymore of the images. Notice that we
attempt to find discontinuities in surface properties and therefore qualitative surface properties:
the inverse optic.- paradigm does not imply that physical properties of the surfaces, such as depth
or reflectance, should be extracted precisely, everywhere. These discontinuities, taken together,
represent a "cartoon" of the original scene which can be used for recognition and navigation (along
with, if needed, interpolated depth, motion, texture and color fields). As yet we did not integrate

our ongoing work on grouping in the Vision Machine. We expect to use a saliency operation on the
output of the edge detection process possibly before the use of intensity edges by the MRF stage.
The grouping based on T-junctions (Beymer, in preparation) should take place on the intensity
edges at. the same level as the MRF stage. Initial work in recognition has been integrated in the
system. The Vision Machine has been demonstrated working form images to recognition through

the integration of visual cues.

The plan of this section is as follows. We will first review the current hardware of the Vision
Machine: the eye-head system and the Connection Machine. We will then describe in some detail
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each of the early vision algorithms that are presently running and are part of the system. After

this, the integration stage will be discussed. We will analyze some results, and illustrate the merits

and the pitfalls of our present system. The last chapter will discus3 a real-time visual system. and

some ideas on how to put the system into VLSI circuits of analog and digital type.

2.3 Hardware

2.3.1 The Eye-Head System

Because of the scope of the Vision Machine project, a general purpose image input device is required.

Such a device is the eye-head system. Here we discuss its current and future configurations.

The eye-head system consists of two CCD cameras, which act as eyes, mounted on a variable-

att'tude platform, which acts as the head. Inspired by biology, the apparatus is configured such

that the head moves the eyes as a unit, while allowing the eyes to point independently. Each eye is

equipped with a motorized zoom lens (F1.4, focal length from 12.5 to 75mm), allowing control of

the iris, focus, and focal length by the host computer (currently a Symbolics 3600 Lisp 'achine).

Other hardware allows for repeatable calibration of the entire apparatus.

Because of the size and weight of the motorized lenses, it would be impractical to achieve eye

movement by pointing the camera/lens assemblies directly. Instead, each assembly is mounted

rigidly on the head, with eye movement achieved indirectly. In front of each lens is a pair of front

surface mirrors, each of which can be pivoted by a galvanometer, providing two degrees of freedom

in aiming the cameras. At the expense of a more complicated imaging geometry, we get a simple

and fast pointing system for the eyes.

The head is attached to its mount via a spherical joint, allowing head rotation about two orthogonal

axes (pan and tilt). Each axis is driven by a stepper motor coupled to its drive shaft th,-ough a

harmonic drive. The latter provides a large gear ratio in conjunction with very little mechanical

backlash. Under control of the stepper motors, the head can be panned 180 degrees from left

to right, and tilted 90 degrees (from vertical-down to horizontal). Each of the stepper motors is

provided with an optical shaft encoder for shaft position feedback (a closed-loop control scheme

is employed for the stepper motors). The shaft encoders also provide an index pulse (one per

revolution) which is used for ji,,int calibration in conjunction with mechani :al limit switches. The

latter also protect the head from damage due to excessive travel.

The overall control system for the eye-head system is distributed over a micro-processor network

(UNET) developed it the MIT AI Laboratory for the control of vision/robotics hardware. The

UNET is a "multi-drop" network supporting up to 32 micros, under the control of a single host. The
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micros normally function as network slaves, with the host acting as the master. In this mode the

micros only "speak when spoken to," responding to 'arious network operations either by receiving

information (command or otherwise) or by transmitting information (such as status or results).

Associated with each micro on the UNET is a local 16-bit bus (UBUS), which is totally under the

cont-ol of the micro. Peripheral devices such as motor drivers, galvanometer drivers, and pulse

width modulators (PWMs), to name a few, can be interfaced at this level.

At present, three micro-processors are installed on the eye-head UNET: one each for the galvanome-

ters. motorized lenses, and stepper motors. The processors currently employed are based on the

Intel 8051. Each of these micros has an assortment of UBUS peripherals under its control. By

making these peripherals sufficiently powerful, each micro's control task can remain simple and

manageable. Code for the micros, written in both assembly language and C, is facilitated by a

Lisp-based debugging environment.

A single major enhancement remains for the eye-head system. Currently, a Symbolics Lisp Machine

acts as the host processor for the UNET. In the fall of '89, an intermediate real-time processor will

be placed between the Lisp Machine and the UNET, acting as master of the latter. The real-time

processor (referred to as the DSP, being based on a Digital Signal Processor chip) will relieve the

Lisp Machine of all the UNET protocol tasks, as well as various low-level, real-time control tasks for

which the Lisp Machine is ill-suited. Among the tasks envisioned for the DSP is optimal position

estimation of moving targets.

2.3.2 Our Computational Engine: The Connection Machine

The Connection Machine is a powerful fine-grained parallel machine which has proven useful for

implementation of vision algorithms. In implementing these algorithms, several different models

of using the Connection Machine have emerged, since the machine provides several different corn

munication modes. The Connection Machine implementation of algorithms can take advantage

of the underlying architecture of the machine in novel ways. We describe here several common,

elementary operations which recur throughout the following discussion of parallel algorithms.

The Connection M'achine

The CM-2ve.. .n of the C,,no,-, Machine (ils, 1985) i parallel cAmnti Prmachin with

between 16K and 64K processors, operating under a single instruction stream broadcast to all

processors. It is a Single Instruction Multiple Data (SIMD) machine; all processors execute the

sa.ne control stream. Each processor is a simple 1-bit processor, currently with 64K bits of memory,

optionally with a floating point arithmetic accelerator, shared among 16 (or 32) processors. There

are two modes of communication among the processors: the NEWS network and the router. The
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NEWS network (so-called because the connections are in the four cardinal directions) provides

rapid direct communication between neighboring processors in an rectangular grid of arbitrary

dimension. For example, 64K processors could be configured into a two-dimensional 256 x 256 grid,

or into a four-dimesional 64 x 64 x 4 x 4 grid. The second mode of communication is the router,

which alloN~s messages to be sent from any processor to any other processor in the machine. The

processors in the Connection Machine can be envisioned as being the vertices of a 16-dimensional

hypercube (in fact, it is a 12-dimensional hypercube; at each vertex of the hypercube resides a chip

containing 16 processors). Each processor in the Connection Machine is identified by its hypercube

address in the range 0...6553.5, imposing a linear order on the processors. This address denotes

the destination of messages handled by the router. Messages pass along the edges of the hypercube

from source processors to destination processcrs. The Connection Machine also has facilities for

returning to the host machine the result of various operations on a field in all processors; it can

return the global maximum, minimum, sum. logical AND, and logical OR of the field.

The floating-point arithmetic accelerator, which may optionally be added to the Connection Ma-

chine, provides a significant increase in the speed of both single and double precision computations.

One floating-point processor chip serves a pair Connection Machine processor chips with 32 total

processors in a pipelined fashion, and can produce a speed-up of more than a factor of twenty.

To allow the machine to manipulate data structures with more than 64K elements, the Connection

Machine supports virtual processors. A single physical processor can operate as a set of multiple

virtual processors by serializing operations in time, and by partitioning the memory of each pro-

cessor. This is otherwise invisible to the user. Connection Machine programs utilize Common Lisp

syntax, in a language called *Lisp, and are manipulated in the same fashion as Lisp programs.

Powerful Primitive Operations

Many vision problems must be solved by a combination of communication modes on the Connection

Machine. The design of these algorithms takes advantage of the underlying architecture of the

machine in novel ways. There are several common, elementary operations used in this discussion

of parallel algorithms: routing operations, scanning, and distance doubling.

Routing

Memory in the Connection Machine is associated with processors. Local memory can be accessed

rapidly. Memory of processors nearby in the ?TEWS network can be accessed by passing it through

the processors on the path between the souTce and the destination. At present, NEWS accesses

in the machine are made in the same direction for all processors. The router on the Connection

Machine provides parallel reads and writes among processor memory at arbitrary distances and

with arbitrary patterns. It uspc a packet-switched message routing scheme to direct messages along

the hypercube connectio,s to their destinations. This powerful communication mode can be used to

reconfigure comp!etely, in one parallel write operation taking one router cycle, a field of information

in the machine. The Connection Machine supplies instructions so that many processors can read
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from the bame location or write to the same location, but sinze these memory references can cause

significant delay, we will usually only consider exclusive read, exclusive write instructions. We will

usually not allou more than one processor to access the memory of another processor at one time.

The Connection Machine can comoine messages at a destination by various operations, such as

logical AND, inclusive OR, summation, and maximum or minimum.

Scanning

The scan operations (Blelloch, 1987) can be used to simplify and speed up many algorithms.

They directly take advantage of the hypercube connections underlying the router. tnd can be

ased to distribite values among the processors and to aggregate values using associative operators.

Formally. the scan operation takes a binary associative operator E, with identity 0, and an ordered

set [a0, a1 ... , an-1, and returns the set [ao, (ao D a,),... , (ano E a, E ... ED an-1)]. This operation

is sometimes referred to as the data independent prefix operation. Binary associative operators

include minimum, maximum. and plus.

The four scan operations plus-scan, max-scan, min-scan, and copy-scan are implemented in mi-

crocode, and take about the same amount of time as a routing cycle. The copy-scan operation

takes a value at the first processor and distributes it to the other processors. These scan operations

can take segment bits that divide the processor ordering into segments. The beginning of each

segment is marked by a processor whose segment bit is set, and the scan operations strt over

again at the beginning of each segment.

The scan operations also work using the NEWS addressing scheme, termed grid-scans. These

compute the sum, and quickly find the maximum, copy, or numbe values along rows or columns

of the NEWS grid.

For example, grid-scans can be used to find, for each pixel, the sum of a square region with width

2m + I centered at the pixel. This sum is computed using the following steps. First, a plus-scan

operation accumulates partial sums for all pixels along the rows. Each pixel then gets the result

of the scan from the processor m in front of it and m behind it; the difference of these two values

represents the sum, for each pixel, of its neighborhood along the row. We now execute the same

calculation on the columns, resulting in the sum, for each pixel, of the elements in its square. The

whole process only requires a few scans and routing operations, and runs in time independent of

the size of m. The summation operations are generally useful to accumulate local support in many

of our algorithms, such as stereo and motion.

Distance Doubling

Another important primitive operation is distance doubling (Wyllie, 1979; Lim, 1986), which can

be used to compute the effect of any binary, associative operation, as in scan, on processors linked

in a list or a ring. For example, using max, distance doubling can find the extremum of a field
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contained in the processors. Ubing message-passing on the router, distance doubling can propagate
the extreme value to all processors in the ring of N processors in O(logN) steps. Each step
involves two ,c nd operations. T)picall), the value to be maximized is chosen to be the hypercube
address. At termination, each processo, in the ring knows the label of the maximum processor in
the ring, hereaftei termed the principal processor. This labels all connected processors uniquely,
and nominates a processor as the representative for the entire set of connected processors. At the
same time, the distance from the principal can be computed in each processor. Each processor
initially, at step 0, has the address of the next processor in the ring, and a value which is to be
maximized. At the termination of the ;14 step, a processor knows the addresses of processors 2' + I
away, and the maximum of all values within 2'- 1 processors away. In the example, the maximum
value has been propagated to all 8 processors in log 8 = 3 steps.

2.4 Early Vision Algorithms and their Parallel Implementation

2.4.1 Edge Detection

Edge detection is a key first step in correctly identify:.g physical changes. The apparently simple
problem of measuring sharp brightness changes in the image has proven to be difficult. It is now clear
that edge detection should be intended not simply as finding "edges" in the images, an ill-defined
concept in general, but as measuring appropriate derivatives of the brightness data. This involves
the task-dependent use of different two-dimensional derivatives. In many cases, it is appropriate
to mark locations corresponding to appropriate critical points of the derivative such as maxima
or zeroes. In some cases, later algorithms based on these binary features (presence or absence of
edges) may be equivalent, or very similar, to algorithms that directly use the continuous value of
the derivatives. A case in point is provided by our stereo and motion algorithms, to be described
later. As a consequence, one ,:hould not always make a sharp distinction between edge-based and
intensity based algorithms; the distinction is more blurred, and in some cases it is almost a matter
of implementation.

In our current implementation of the Vision Machine, we are using two different kinds of edges.
The first consists of zero-crossings in the Laplacian of the image filtered through an appropriate
Gaussian. The second consists of the edges found by Canny's edge detector. Zero-crossings can
be used by our stereo and motion algorithms (though we have mainly used Canny's edges at fine
resolution). Canny's edges (at a coa'ser resolution) are input to the MRF integration scheme.

Zero- Crossings
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Because the derivative operation is ill-posed, we need to filter the resultant data through an appro-

priate low-pass filter (Torre and Poggio, 1986). The filter of choice (but not the only possibility!)

is a Gaussian at a suitable spatial scale. An interesting and simple implementation of Gaussian

convolution relies on the binomial approximation to the Gaussian distribution. This algorithm

requires only integer addition, shifting, and local communication on the 2D mesh, so it can be

implemented on a simple 2D mesh architecture (such as the NEWS network on the Connection

Machine).

The Laplacian of a Gaussian is often approximated by the difference of Gaussians. The Laplacian

of a Gaussian can also be computed by convolution %.ith a Gaussian followed by convolution with a

discrete Laplacian; we have implemented both on the Connection Machine. To detect zero-crossings.

the computation at each pixel need only examine the sign bits of neighboring pixels.

Canny Edge Detection

The Canny edge detector is often used in image understanding. It is based on directional derivatives,

so it has improved localization. The Canny edge detector on the Connection Machine consists of

the following steps:

" Gaussian smoothing,

* Directional derivative,

* Non-maximun, suppression,

" Thresholding with hysteresis.

Gaussian filtering, as described above, is a local operation. Computing directional derivatives is

also local, using a finite difference approximation referencing only local neighbors in the image grid.

Non-maximum Suppression

Non-maximum suppression selects as edge candidates those pixels for which the gradient magnitude

is maximal in the direction of the gradient. This involves interpolating the gradient magnitude

between each of two pairs of adjacent pixels among the eight neighbors of a pixel, one forward in

the gradient direction, and one backward. However, it may not be crucial to use interpolation, in

which case magnitudes of neighboring values can be directly compared.

Thresholding with Hysteresis

Thresholding with hysteresis eliminates weak edges due to noise, using the threshold, while con-

necting extended curves over small gaps using hysteresis. Two thresholds are computed, low and

high, based on an estimate of the noise in the image brightness. The non-maximum suppression

step selects those pixels where the gradient magnitude is maximal in the direction of the gradient.

In the thresholding step, all selected pixels with gradient magnitude below low are eliminated. All
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pixels with values above high are considered as edges. All pixels with values between low and high

are edges if they can be connected to a pixel above high through a chain of pixels above low. All

others are eliminated.

This is a spreading activation operation; it propagates information along a set of connected edge

pixels. The algorithm iterates, in each step marking as edge pixels any low pixels adjacent to

edge pixels. When no pixels change state, the iteration terminates, taking O(m) steps. a number

proportional to the length m of the longest chain of lou' pixels which eventually become edge pixels.

The running time of this operation can be reduced to O(log m), using distance doubling.

Noise Estimation

Estimating noise in the image can be done by analyzing a histogram of the gradient magnitudes.

Most computational implementations of this step perform a global analysis of the gradient magni-

tude distribiltion, which is essentially nop-local; we have had success with a Connection Machine

implementation using local histograms. The thresholds used in Canny edge detection depend on the

final task for which the edges are used. A conservative strategy can use an arbitrary low threshold

to eliminate the need for the costly processing. required to accumulate a histogram. Where a more

precise estimate of noise is needed, it may be possible to find a scheme that uses a coarse estimate

of the gradient magnitude distribution, with minimal global communication.

2.4.2 Stereo

The Drumheller-Poggio parallel stereo algorithm (Drumrheller and Poggio, 1986) runs as part of

the Vision Machine. Disparity data produced by the algorithm comprise one of the inputs to the

MRF-based integration stage of the Vision Machine. We are exploring various extensions of the

algorithm, as well as the possible use of feedback from the integration stage. In this section, we

will review the algorithm briefly, then proceed to a discussion of current research.

The stereo algorithm runs on the Connection Machine system with good results on natural scenes

in times that are typically on the order of one second. The stereo algorithm is presently being

extended in the context of the Vision Machine project.

The Drumheller-Poggio Stereo Algorithm

t aching an i-posed pbem (see lertero et al., 19N) t1.a, cannot be solved v. 1hout

taking advantage of natural constraints. The continuity constraint (see, for instance, Marr and

Poggio, 1976) asserts that the world consists primarily of piecewise smooth surfaces. If the scene

contains no transparent objects, then the uniqueness constraint applies: there can be only one

match along the left or right lines of sight. If there are no narrow occluding objects, the ordering
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constraint (Yuille and Poggio, 1984) holds: any two points must be imaged in the same relative

order in the left and right eyes.

The specific a priori assumption on which the algorithm is based is that the disparity, that is, the

depth of the surface, is locally constant in a small region surrounding a pixel. It is a restrictive

assumption which*, however. may bc a satisfactory local approximation in many cases (it can be

extended to more general surface assumptions in a straightforward way, but at a high computational

cost). Let EL(X, y) and ER(X. y) represent the left and the right image of a stereo pair, or some

transformation of it, such as filtered images or a map of the zero-crossings in the two images (more

generally, they can be maps containing a feature vector at each location (x, y) in the image).

We look fo? a discrete disparity d(x, y) at each location x, y in the image that minimizes

IIEL(x. y) - ER(X + d(x, y),)I1pMCd

where the norm is a summation over a local neighborhood centered at each location (x, y); d(x) is

assumed constant in the neighborhood. The previous equation implies that we should look at each

(x.y) for d(x,y) such that

patchi(EL(x, y)ER(x + d(x, y), y)) 2dxdy (1)

is maximized.

The algorithm that we have implemented on the Connection Machine is actually somewhat more

complicated, since it involves geometric constraints that affect the way the maximum operation is

performed (see Drumheller and Poggio, 1986). The implementation currently ',sed in the Vision

Machine at the AI Laboratory uses the maps of Canny edges obtained from each image for EL and

ER.

In more detail, the algorithm is comosed of the following steps:

1) Compute features for matching.

2) Compute potential matches between features.

3) Determine the degree of continuity around each potential match.

4) Choose correct matches based on the constraints of continuity, uniqueness, and ordering.

Potential matches between features are computed in the following way. Assuming that the images

are registered so that the epipolar lines are horizontal, the stereo matching problem becomes one-

dimensional: an edge in the left image can match any of the edges in the corresponding horizontal

scan line in the right image. Sliding the right image over the left image horizontally, we compute

a set of potential match planes, one for each horizontal disparity. Let p(x, y, d) denote the value of

the (x, y) entry of the potential match plane at disparity d. We set p(x, y, d) = 1 if there is an edge
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at location (x,y) in the left image and a compatible edge .,t location (x - d, y) in the right image;

otherwise. set p(x, y. d) = 0. In the case of the DOG edge detector, two edges are compatible if the

sign of the convolution for each. edge is the same.

To determine he degree of continuity around each potentiM, match (x.y.d), we compute a local

support score s(x,y.d) = EPatchp(x,y,d), where patch is a small neighborhood of (x,y,d) within

the dth potential match plane. In effect, nearby points in patch can "vote" for the disparity d.

The score s(x, y, d) will be high if the continuity constraint is satisfied near (x, y, d), i.e., if patch

contains many votes. This step corresponds to the integral over the patch in the last equation.

Finally, we attempt to select the correct matches by applying the uniqueness and ordering con-

straints (see above). To apply the uniqueness constraint, each match suppresses all other matches

along the left and right lines of sight with weaker scores. To enforce the ordering constraint, if two

matches are not imaged in the same relative order in left and right views we discard the match

with the smaller support score. In effect, each match suppresses matches with lower scores in its

forbidden zone (Yuille and Poggio, 1984). This step corresponds to choosing the disparity value

that maximizes the integral of the last equation.

Improvements

Using this algorithm as a base, we have explored several of the following topics:

Detection of Depth Discontinuities

The Marr-Poggio continuity constraint is both a strength and a weakness of the stereo algorithm.

Favoring continuous disparity surfaces reduces the solution space tremendously, but also tends to

smooth over depth discontinuities present in the scene. Consider what happens near a linear depth

discontinuity, say a point near the edge of a table viewed from above. The square local support

neighborhood for the point will be divided between points on the table and points on the floor;

thus. almost half of the votes will be for the wrong disparity.

One solution to this problem is feedback from the MRF integration stage. We can take the depth

discontinuities located by the integration stage (using the results from a first pass of the stereo

algorithm, among other inputs) and use them to restrict the local support neighborhoods so that

they do not span discontinuities. In the example mentioned above, the support neighborhood would

be trimmed to avoid crossing the discontinuity between the table and the floor, and thus would not

pick up spurious votes from the floor.

We can also try to locate discontinuities by examining intermediate results of the stereo algorithm.

Consider a histogram of votes vs. disparity for the table/floor example. For a support region

centered near the edge of the table, we expect to see two strong peaks: one at the disparity of the

floor, and the other at the disparity of the table. Therefore a bimodal histogram is strong evidence

for the presence of a discontinuity.
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Tb,5:i two ideas can be used in conjunction. Discontinuity detection within stereo can take ad-

vantage of the extra information provided by the vote histograms. By passing better depth data

(and perhaps candidate discontinuity locations) to the integ-ation stage, we improve th- detection

of discontinuities at the higher level.

Improving the Stereo Matcher

The original Drumheller-Poggio algorithm matched DOG zero-crossings, where the local support

score counted the number of zero-crossings in the left image patch matching edges in the right

image patch at a given disparity. We have modified the matcher in a variety of ways.

1) Canny edges. The matcher now uses edges derived by a parallel implementation of the Canny

edge detector (Canny, 1983; Little et al., 1987) rather than DOG zero-crossings. for better local-

ization.

2) Gradient direction constraint. We allow two Canny edges to match only if the associated

brightness gradient directions are aligned within a parameterized tolerance. This is analogous to the

restriction in the Marr-Poggio-Grimson stereo algorithm (Grimson, 1981), where two zero-crossings

can match only if the directions of the DOG gradients are appro.dmately equal. Matching gradient

orientations is a tighter constraint than matching the sign of the DOG convolution. Furthermore,

the DOG sign is numerically unstable for horizontally oriented edges.

3) The scores are now normalized to take into account the number of edges in the left and right

image patches eligible to match, so that pa'tches with high edge densities do not generate artificially

high scores. We plan to change the matcher so that edges that fail to match would count as negative

evidence by reducing the support score, but this has not yet been implemented.

In the near future, we will explore matching brightness values as well as edges, using a cross-

correlation approach similar to that of Little, Buelthoff and Poggio (1987) for motion estimation.

Identifying Areas that are Outside of the Matcher's Disparity Range

The stereo algorithm searches a limited disparity range, selected manually. Every potential match

in the scene (an edge with a matching edge at some disparity) is assigned the in-range disparity

with the highest score, even though the correct disparity may be out of range. How can we tell

when an area of the scene is out of range? The most effective approach that we have attempted

to date is to look for regions with low matching scores. Two patches that are incorrectly matched

will, in general, produce a low matching score.

Memory-Based Recistration and Calibration

Registration of the image pair for the stereo algorithm is done by presenting to the system a

pattern of dots, roughly on a sparse grid, at the distance around which stereo has to operate. The

registration is accomplished using a warping computed by matching the dots from the left and

right images. The dots are sparse enough that matching is unambiguous. The matching defines a
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warping vector for each dot; at other points the warping is computed by bilinear interpolation of

the two components of warping vectors. The warping necessary for mapping the right image onto
the left image is then stored. Prior to stereo-matching. the right image is warped according to the

pre-stored addresses by sending each pixel in the right image to the processor specified in the table.

The warping table corrects for deformations, including those due to vertical disparities and ro.

tations, those due to the image geometry (errors in the alignment of the cameras, perspective
projection, errors introduced by the optics, etc.). We plan to store several warping tables for ea,.h

of a few convergence angles of the two cameras (assuming symmetric convergence). We conjecture
that simple interpolation can yield sufficiently accurate warping tables for fixation angles inter-
mediate to the ones stored. Notice that these tables are independent of the position of the head.
Absolute depth is not the concern here (we are not using it in our present Vision Machine), but
it could ea-ily be recovered from knowledge of the convergence angle. Notice also that the whole

registration scheme has the flavor of a learning process. Convergence angles are inputs and warping
tables are the outputs of the modules; the set of angles, together with the associated warping tables,
represent the set of input-output examples. The system can "generalize" by interpolating between
warping tables and providing the warping corresponding to a vergence angle that does not appear

in the set of "exampies". Calibration of disparity to depth could be done in a similar way.

2.4.3 Motion

The motion algorithm computes the optical flow field, a vector field that approximates the projected
motion field. The procedure produces sparse or dense output, depending on whether it uses edge
features or intensities. The algorithm assumes that image displacements are small, within a range

(±-6, ±6). It is also i:ssumed that the optical flow is locally constant in a small region surrounding
a point. This assumption is strictly only true for translational motion of 3D planar surface patches

parallel to the image plane. It is a restrictive assumption which, however, may be a satisfactory
local approximation in many cases. Let Et(x, y) and Et+At(x, y) represent transformations of two
discrete images separated by time interval At, such as filtered images, or a map of the brightness

changes in the two images (more generally, they can be maps containing a feature vector at each

location (x, y) in the image' (ass, 1986; Nishihara, 1984).

We look for a discrete motion displacement L = (v,, vy) at each location x, y in the image that

minimizes

IIEd~x, y) - Et+At(x + v.At. y + vA)~ptN = min)

where the norm is a summation over a local neighborhood centered at each location (X, y); Y(x,y)

is assumed con';tant in the neighborhood. The previous equation implies that we should look at
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each (x,y) for v (vx, vy) such that

(Et(x,y) - Et+At(X + VUjAt,y + vyAt)) 2'dxdy (2)
Patch i

is minimized. Alternatively, one can maximize the negative of the integrated result. The last

equation represeiats the sum of the pointwise squared differences between a patch in the first image

centered around the location (x, y) and a patch in the secci d image centered around the location

(X + vXAI. y + vAt).

This algorithm can be translated easily into the following description. Consider a network of

processors representing the result of the integrand in the previous expression. Assume for simplicity

that this result is either 0 or 1 (this is the case if Et and Et+At are binary feature maps). The

proc'ssors hold the result of differencing (taking the logical "exclusive or") the right and left image

map for different values of (x, y) and v,, vy. The next stage, corresponding exactly to the integral

operation over the patch, is for each processor to summate the total in an (x, y) neighborhood at the

same disparity. Note that this summation operation is efficiently implemented a the Connection

Machine using scan computations. Each processor thus collects a vote indicating support that a

patch of surface exists at that displacement. The algorithm iterates over all displacements in the

range (±b, -6), recording the values of the integral for each displacement. The last stage is to choose

.(x,y) among the displacements in the allowed range that maximizes the integral. This is done by

an operation of "non-maximum suppression" across velocities out of the finite allowed set. at the

given (x, y), the processor is found that has the maximum vote. The corresponding v(x,y) is the

velocity of the surface patch found by the algorithm. The actual implementation of this schte can

be simplified so that the "non-maximum suppression" occurs during iteration over displacements,

so that no actual table of summed differences over displacements need be constructed. In practice,

the algorithm has been shown to be effective both for synthetic and natura images using different

types of features or measurements on the brightness data, including edges (both zero-crossings of

the Laplacian of Gaussian and Canny's method), which generate sparse results along brightness

edges, or brightness data directly, or the Laplacian of Gaussian, or its sign, which generate dense

results. Because the optical flow is computed f,'om quantities integrated over the individual patches,

the results are robust against the effects of uncorrelated noise.

The comparison stage employs patchwise cross-correlation, which exploits local constancy of the

optical flow (the velocity field is guaranteed to be constant for translations parallel to the image

plane of a planar surface patch); it. is a cubic pohynomi. I for arbitrary motion of a planar surface

(see Waxman, 1987; Little et ai., 1987). Experimentally, we have used zero-crossings, the Laplacian

of Gaussian filtered image, its sign, and the smoothed brightness values, with similar results. It

is interesting that methods superficially so different (edge-based and intensity-based) give such

similar results. As we mentioned earlier, this is not surprising. There are theoretical arguments

that support, for instance, the equivalence of cross-correlating the sign bit of the Laplacian filtered
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image and the Laplacian filtered image itself. The argument is based on the following theorem

(see Little, Buelthoff, and Poggio, in preparation), which is a slight reformulation of a well-known

theorem.

Theorem

If f(x, y) and g(x. y) are zero mean jointly normal processes, their cross-correlation is determined

fully by the correlation of the sign of f and of the sign of g (and determines it). In particular

2
R-, = -arcsin(Rf,9 )

where f = sign f and 4 = sign g

Thus, cross-correlation of the sign bit is exactly equivalent to cross-co:%elation of the signal itself
(for Gaussian processes). Notice that from the point of view of infcrmation, the sign bit of the

signal is completely equivalent to the zero-crossing of the signal. Nishihara first used patchwise
cross-correlation of the sign bit of DOG filtered images (Nishihara, 1984), and has implemented it

more recently on real-time hardware (Nishihara and Crossley, 1988).

The existence of discontinuities can be detected in optical flow, as in stereo, both during compu-

taticm and by processing the resulting flow field. The latter field is input to the MR.F integration
stage. During computation, discontinuities in optical flow arising from occlusions are indicated by

low normalized scores for the chosen displacement.

2.4.4 Color

The color algorithm that we have implemented is a very preliminary version of a module that
should find the boundaries in the surface spectral reflectance function, that is, discontinuities iii
the surface color. The algorithm relies on the idea of effective illumination and on the single source

assumption, both introduced by Hurlbert and Poggio (see Poggio et al., 1985).

The single source assumption states that the illumination may be separated into two components,

one dependent only on wavelength, and one dependent only on spatial coordinates; this generally
holds for illumination from a single light source. It allows us to write the image irradiance equation

for a Lambertian world as

IV = kLE(x,y)pu(x,y)

where I is the image irradiance in the vth spectral channel (v, = red, green, blue), pv(x,y) is the

surface spectral reflectance (or albedo), and the effective illumination E(x, y) absorbs the spatial

variations of the illumination and the shading due to the 3D shape of surfaces (kl is a constant
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for each channel, and depends only on the luminant). A simple segmentation algorithm is then

obtained by considering the equation

Ir kr pr
H(Xy)-r + I 9 - kpr + k9py

which changes only when pr, or p9, or both change. Thus H. which is piecewise constant, has

discontinuities that mark changes in the surface albedo. independently of changes in the effective

illumination.

The quantity H(x,y) is defined almost everywhere, but is typically noisy. To counter the effect of

noise. we exploit the prior information that H should be piecewise constant with discontinuities

that are themselves continuous, non-intersecting lines. As we will discuss later, this restoration step

is achieved by using a MRF model. This algorithm works only under the restrictive assumption

that specular reflections can be neglected. Hurlbert (1989) discusses in more detail the scheme
outlined here and how it can be extended to more general conditions.

2.4.5 Text'a..:,.

The texture algorithm is a greatly simplified parallel version of the texture algorithm developed

by Voorhees and Poggio (1987). Texture is a scalar measure computed by summation of texton

densities over small regions surrounding evei ' point. Discontinuities in this measure can corre-

spond to occlusion boundaries, or orientation discontinuities, which cause foreshortening. Textons
are computed in the image by simple approximation to the methods presented in Voorhees and

Poggio (1987). For this example, the textons are restricted to blob-like regions, without regard to

orientation selection.

To compute textons, the image is first filtered by a Laplacian of Gaussian filter at several different
scales. The smallest scale selects the textural elements. The Laplacian of Gaussian image is then

thresholded at a non-zero value to find the regions which comprise the blobs identified by the

textons. The result is a binary image with non-zero values only in the areas of the blobs. A simple

summation counts the density of blobs (the portion of the summation region covered by blobs) in

a small area surrounding each point. This operation effectively measures the density of blobs at

the small scale, while also counting the presence of blobs caused by large occlusion edges at the

boundaries of textured regions. Contrast boundaries appear as blobs in the Laplacian of Gaussian

image. To remove their effect, we use the Laplacian of Gaussian image at a slightly coarser scale.

Blobs caused by the texture at the fine scale do not appear at this coarser scale, while the contrast

boundaries, as well as all other blobs at coarser scales, remain. This coarse blob image filters the fine

blobs; blobs at the coarser scale are removed from the fine scale image. Then, summation, whether
with a simple scan operation, or Gaussian filtering, can determine the blob density at the fine scale
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only. This is one example where multiple spatial scales are used in the present implementation of

the Vision Machine.

2.4.6 The Integration Stage and MRF

Whereas it is reasonable that combining the evidence provided by multiple cues, for example, edge

detection, stereo. and color, should provide a more reliable map of the surfaces than any single cue

alone, it is not obvious how this integration can be accomplished. The various physical processes

that contribute to image formation, surface depth, surface orientation, albedo (Lambertian and

specular component), illumination, are coupled to the image data, and therefore to each other,

through the imaging equation. The coupling is, however, difficult to exploit in a rooust way, 6ice

it depends critically on the reflectance and imaging models. We argue that the coupling of the image

data to the surface and illumination properties is of a more qualitative and robust sort at locations

in which image brightness changes sharply and surface properties are discontinuous, in short, at

edges. The intuitive reason for this is that at discontinuities, the coupling between different physical

processes and the image data is robust and qualitative. For instance, a depth discontinuity usually

originates a brightness edge in the image. and a motion boundary often corresponds to a depth

discontinuity (and a brightness edge) in the image. This view suggests the following integration

scheme for restoring the data provided by early modules. The results provided by stereo, motion,

and other visual cues are typically noisy and sparse. We can improve them by exploiting the fact

that they should be smooth, or even piecewise constant (as in the case of the albedo), between

discontinuities. We can exploit a priori information about generic properties of the discontinuities

themselves, for instance, that they usually are continuous and non-intersecting.

The idea is then to detect discontinuities in each cue, for instance depth, simultaneously with the

approximation of the depth data. The detection of discontinuities is helped by information on the

presence and type of discontinuities in the surfaces and surface properties (see Figure 1), which are

coupled to the brightness edges in the image.

Notice that reliable detection of discontinuities is critical for a vision system, since discontinuities

are often the most important locations in a scene; depth discontinuities, for example, normally

correspond to the boundaries of an object or an object part. The idea is thus to couple different

cues through their discontinuities and to use information from several cues simultaneously to help

refine the initial estimation of discontinuities, which are typically noisy and sparse.

How can this be done? We have chosen to use the machinery of Markov Random Fields (MRFs),

initially suggested for image processing by Geman and Geman (1984). In the following section,

we will give a brief, informal outline of the technique and of our integration scheme. More de-

tailed information about MRFs can be found in Geman and Geman (1984) and Marroquin et al.
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(1987). Gamble and Poggio (1987) describe an earlier version of our integration scheme and its

implementation as outlined in the next section.

MRF Models

Consider the prototypical problem of approximating a surface given sparse and noisy data (depth

data) on a regular 2D lattice of sites. We first define the prior probability of the class of surfaces

we are interested in. The probability of a certain depth at any given site in the lattice depends

only upon neighboring sites (the Markov property). Because of the Clifford-Hammersley theorem,

the prior probability is guaranteed to have the Gibbs form

1 t~~t_(.
P(f) =- e T

where Z is a normalization constant, T is called temperature, and U(f) = Ec Uc(f) is an energy

function that can be computed as the sum of local contributions from ezch neighborhood. The

sum of the potentials, UC(X), is over the neighborhood's cliques. A clique is either a single lattice

site or a set of lattice sites such that any two sites belonging to it are neighbors of one another.

Thus U(f) can be considered as the sum over the possible configurations of each neighborhood (see

Marroquin et al.. 1987). As a simple example, when the surfaces are expected to be smooth, the

prior probability can be given as sums of terms such as

Ue(f) = (f -/j)2

where i and j are neighboring sites (belonging to the same clique).

If a model of the observation process is available (i.e., a model of the noise), then one can write the

conditional probability P(g/f) of the sparse observation g for any given surface f. Bayes Theorem

then allows one to write the posterior distribution

1 -U(Ilg)
P(f/g) = -e T

In the simple earlier example, we have (for Gaussian noi3e)

U(f/g) = Zai(fi- g,) 2 + (f, - fj)2

C

where -i = I only where data are available. More complicated cases can be handled in a similar

manner.

The posterior distribution cannot be solved analytically, but sample distributions can be obtained

using Monte Carlo techniques such as the Metropolis algorithm. These algorithms sample the

space of possible surfaces according to the probability distribution P(f/g) that is determined by
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the prior knowledge of the allowed class of surfaces, the model of noise, and the observed data. In

our implementation, a highly parallel computer generates a sequence of surfaces from which, for

instance, the surface corresponding to the maximum of P(f/g) can be found. This corresponds

to finding the global minimum of U(f/g) (simulated annealing is one of the possible techniques).

Other criteria can be used: Marroquin (1985) has shown that the average surface f under the

posterior distribution is often a better estimate. and one which can be obtained more efficiently by

simply finding the average value of f at each lattice site.

One of the main attractions of MRFs is that the prior probability distribution can be made to

embed more sophisticated assumptions about the world. Geman and Geman (11984) introduced the

idea of another process, the line process, located on the dual lattice, and representing explicitly the

presence or absence of discontinuities that break the smoothness assumption. The associated prior

energy then becomes

Uc(f) = (fi - fj)2(1 - 1j) + pVc(1i)

where I is a binary line element between site ij. Vc is a term that reflects the fact that certain

configurations of the line proces- are more likely than others to occur. In our world, depth dis-

continuities are usually themselves continuous, non-intersecting, and rarely isolated joints. These

properties of physical discontinuities can be enforced locally by defining an appropriate set of en-

ergy values Vc(I) for different configurations of the line process in the neighborhood of the site

(notice that the assignment of zero energy values to the non-central cliques mentioned in Gamble

and Poggio (1987) is wrong, as pointed out to us by Tal Symchony).

Organization of Integration

It is possible to extend the energy function to accommodate the interaction of more processes and

thir discontinuities. In particular, we have extended the energy function to couple several of the

early vision modules (depth, motion, texture, and color) to brightness edges in the image. This is a

central point in our integration scheme; brightness edges guide the computation of discontinuities in

the physical properties of the surface, thereby coupling surface depth, surface orientation, motion,

texture, and color, each to the image brightness data and to each other. The reason for the role

of brightness edges is that changes in surface properties usually produce large brightness gradients

in the image. It is exactly for this reason that edge detection is so important in both artificial and

biological vision.

The coupling to brightness edges may be done by replacing the term Vc(lg) in the last equation

with the term

V(Ie) = g(ei) VC(Ih))

with ej representing a measure of the presence of an brightness edge between site ij. The term
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g has the effect of modifying the probability of the line process configuration depending on the

brightness edge data (V(1,e) = -log p(l/e)). This term facilitates formation of discontinuities

(that is, 1j) at the locations of brightness edges. Ideally, the brightness edges (and the neighboring

image properties) activate, with different probabilities, the different surface discontinuities (see

Figure 1), which in turn are coupled to the output of stereo, motion, color, texture, and possibly

other early algorithms.

We have been using the MRF machinery with prior energies like that shown above (see also Figure

1) to integrate edge brightness data with stereo, motion, and texture information on the MIT Vision

Machine System.

We should emphasize that our present implementation represents a subset of the possible interac-

tions shown in Figure 1, itself only a simplified version of the organization of the likely integration

process. The system will be improved in an incremental fashion, including pathways nLot shown in

Figure 1. such as feedback from the results of integration into the matching stage of the stereo and

motion algorithms.

Algorithms: Deterministic and Stochastic

We have chosen to use MRF models because of their generality and theoretical attractiveness. This

does not imply that stochastic algorithms must be used. For instance, in the cases in which the

MRF model reduces to standard regularization (Marroquin et al., 1987) and the data are given

on a regular grid, the MRF formulation leads not only to a purely deterministic algorithm, but

also to a convolution filter. Recent work in color (Hurlbert and Poggio, 1989) shows that one can

perform integration similar to the MRF-based scheme using a deterministic update. Geiger and

Girosi (1989) have shown that there is a class of deterministic schemes that are the mean-field

approximations of the MRF models. These schemes have a much higher speed than the Montecarlo

schemes we used so far, while promising similar performance.

2.5 Illustrative Results

Figures 2 and 3 show the results of the Vision Machine applied to the scene in Figure 2 and some

of the intermediate steps. Figure 3 shows the brightness edges computed by the Canny algorithm

at two different spatial scales (o = 2.5 and o = 4). We show neither the stereo pair nor the motion

sequence in which the teddy bear was rolling slightly on his back from one frame to the next.

The results given by the stereo, motion, texture and color algorithms, after an initial smoothing

to make them dense (see Gamble and Poggio, 1987), are shown in the first column on the left of

Figure 4 (from top to bottom). They represent the input to the MRF machinery that integrates

each of those data sets with the brightness edges. The color algorithm uses the edges at the

coarser resolution, since we want to avoid detecting texture marks on the surface; the other cues
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Figure 2: Grey-level image of a natural scene processed by the Vision Ma-
chine.

Figure 3: Canny edges of the images in Figure 2.



Figure 4: MRF results for stereo, motion, textu-e, and color.

Figure 5: Union of depth and motion discontinuities.



are integrated with the Canny edges at a smaller scale (o = 2.5). The central column ol Figure 4

shows the reconstructed depth, color (the quantity H defined earlier), texture and motion flow; the

left colunin show the discontinuities found by the MRF machinery in each of the cues. Processing

of the stereo output finds depth discontinuities in the scene (mainly the outlines of the teddy, plus

a fold of a wet suft protruding outward). Motion discontinuities are found by the MRF machinery

with help from brightness edges. The color boundaries show regions of constant surface color,

independently of its shading: notice, for instance, that brightness edges inside the teddy bear, due

to shading. do not appear as color edges (the color images were taken from a different camera).

The texture boundaries correspond quite well to different textured surfaces.

Figure .5 shows that. the union of the discontinuities in depth and motion for the scene of Figure 2

gives a rather good "cartoon" of the original scene. At the same time, our integration algorithm

achieves a preliminary classification of the brightness edges in the image, in terms of their physical

origin. A more complete classification will be achieved by the full scheme in : the lattices at the

top classify the different types of discontinuities in the scene. The set of such discontinuities in the

various physical processes should represent a good set of data for later recognition stages.

2.6 Recognition

The output of the integration stage provides a set of edges labeled in terms of physical discontinuities

of the surface properties. They represent a good input to a model-based recognition algorithm like

the ones described by Dan Huttenlocher and Todd Cass in the 1988 Proceedings of the Image

Understanding Workshop. In particular, we have interfaced the Vision Machine as implemented so

far with the Cass algorithm. We have used only discontinuities for recognition; later we will also

use the information provided by the MRFs on the surface properties between discontinuities.

We have more ambitious goals for the recognition stage of the Vision Machine. In an unconstrained

environment the library of models that a system with human-level performance requires is in the

order of many thousands. Thus, the ability to learn from examples appears to be essential for the

achievemen' of high performance in real-world recognition tasks. Learning the models becomes

then a primry concern in developing a recognition system for the Vision Machine. This has not

been the case in other approaches of the last few years, mainly motivated by a robotic framework.

2.6.1 Learning in a three-siage recognition scheme

Although some of the existing recognition systems incorporate a module for learning object models

from examples (e.g., Tucker's 2D system [67]) no such capability exists yet for the more difficult

problems of recognizing 3D objects [37] o- handwriting [16]. We believe that incorporating learn-

ing into a general-purpose recognition system may be facilitated by breaking down the task of
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recognition into three distinct but interacting stages: selection, indexing and verification.

Selection

Selection or segmentation breaks (town the image into regions that are likely to correspond to
single objects. The utility of an early segmentation of a scene into meaningful entities lies in the

great reduction of complexity of scene interpretation. Each of the detected objects can in turn be
subjected to separate recognition, by comparing it with object models stored in memory. Without
prior segmentation, every possible combination of image primitives such as lines and blobs can in

principle constitute an object and must be checked out. The power of early segmentation may
be enhanced by integrating all available visual cues, especially if the integration parameters are

automatically adjusted to suit the particular scene in question.

Indexing

By indexing we mean defining a small set of candidate objects that are likely to be present in
the image. Although one cannot hope to achieve an ideal segmentation in real-world situations,
partial success is sufficient if the indexing process is robust. Assuming that most objects in the
real world are redundantly specified by their local features, a good indexing mechanism would use
such features to overcome changes in viewpoint and illumination, occlusion an noise.

What kind of feature is good for indexing? Reliably detected lines provided by the integration of

several low-level cues in the process of segmentation may suffice in many cases. We conjecture that
simple viewpoint-invariant combinations of primitive elements, such as two lines forming a corner,

parallel lines and symmetry are also likely to be useful. Ideally, only 2D information should be
used for indexing, although it may be augmented sometimes by qualitative 3D cues such as relative
depth.

Verification

In the verification stage each of the candidates screened by the indexing process is tested to find the
best match to the image. At this stage, the system can afford to perform complicated tests, since the

number of candidate objects is small. We conjecture that hierarchical indexing by a small number

(two or three) features that are spatially localized in 2D suffices to achieve useful interpretations
of most everyday scenes. In general, however, further verification by task-dependent routines [68]
or precise shape matching, possibly involving 3D information, is required [69] [47] [37][671 [7] [1].

2.7 Future Developments

The Vision Machine should evolve in s.veral parallel directions:
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" improvement and extensions of its early modules

* improvement of the integration and recognition stages (recognition is discussed later)

* use of the eye-head system in al active mode during recognition task by developing

appropriate gaze strategies

" use of the results of the integration stage in order to improve the operation of early modules

such as stereo and motion by feeding back the preliminary computation of the discontinuities

Two goals will occupy most of our attention, if we will be able to continue to work on the project.

The first one is the development of the overall organization of the Vision Machine. The system can

be seen as an implementation of the inverse optics paradigm: it attempts to extract surface proper-

ties from the integration of image cues. It must be stressed that we never intended this framework

to imply that precise surface properties such as dense, high resolution depth maps, must be deliv-

ered by the system. This extreme interpretation of inverse optics seems to be common, but was

not the motivation of our project, which originally started with the name Coarse Vision Machine

to emphasize the importance of computing qualitative, as opposed to very precise, properties of

the environment.

Our second main goal in the Vision machine project will be Machine Learning, that we will discuss in

the next chapter. In particular, we have begun to explore simple learning and estimation techniques

for vision tasks. We have succeded in synthetizing a color algorithm from examples [36] and in

developing a technique to perform unsupervised learning [63] of other simple vision algorithms

such as simple versions of the computation of texture and stereo. In addition, we have used

learning techniques to perform integration tasks, such as labeling the type of discontinuities in

a scene. We have also begun to explore the connections between recent approaches to learning,

such as neural networks, genetic algorithms, and classical methods in approximation theory such

as splines, Bayesian techniques and Markov Random Field models, as discussed in one of the next

chapters. We have identified some common properties of all these approaches and some of the

common limitations, such as sample complexity. As a consequence, we now believe that we can

leverage our expertise in approximation techniques for the problem of learning in machine vision.

For further details and background information on this work, see the following refernces: [75, 60,

3, 46, 39, 32, 74, 43, 71, 8, 49, 10, 41, 64, 65, 40, 59, 58, 70].
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3 VLSI

3.0.1 A VLSI Vision Machine?

Our Vision Machine consists mostly of specialized software running on a general purpose computer.

the Connection Machine. This is a good system for the present stage of experimentation and

development. Later, on - we have perfected and tested the algorithms and the overall system,
it will make sense to compile the software in silicon in order to produce a faster, cheaper. and
smaller Vision Machine. We are presently planning to use VLSI technologies to develop some

initial chips as a first step toward this goal. In this section, we will outline some thoughts about

VLSI implementation of the Vision Machine.

Algorithms and Hardware

We realize that our specialized software vision algorithms are not, in general, optimized for hard-

ware implementation. So, rather than directly "hardwiring algorithms" into standard computing

circuitry, we will be investigating "algorithmic hardware" designs that utilize the local, symmetric
nature of early vision problems. This will be an iterative process, as the algorithm influences the
hardware design and as hardware constraints modify the algorithm.

Degree of Parallelism

Typical vision tasks require tremendous amounts of computing power, and are usually parallel in

nature. As an example, biological vision uses highly parallel networks of relatively slow components

to achieve sophisticated systems. However, when implementing our algorithms in silicon integrated

circuits, it is not clear what level of parallelism is necessary. While biology is able to use three

dimensions to construct highly interconnected parallel networks, VLSI is limited to 2 1 dimensions,
making highly parallel networks much more difficult and costly to implement. However, the elec-

trical components of silicon integrated circuits are approximately four orders of magnitude faster
than the electrochemical compoihents of biology. This suggests that pipelined processing or other

methods of time-sharing computing power may be able to compensate for the lower degree of con-

nectivity of silicon VLSI. Clearly, the architecture of a VLSI vision system may not resemble any

biological vision systems.

Signal Representation

Within the integrated circuit, the image data may be represented as a digital word or an analog
value. While the advautages of digital computation are its accuracy and speed, digital circuits do

not have as high a degree of functionality per device as analog circuits. Therefore, analog circuits

should allow much denser computing networks. This is particularly important for the integration of
computational circuitry and photosensors, which will help to alleviate the I/O bottleneck typically

experienced whenever image data are serially transferred between Vision Machine components.
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However, analog circuits are limited in accuracy, and are difficult to characterize and design.

The primary motivation for a VLSI implementation of our Vision Machine is to increase the conpu-

tational speed and reduce the physical size of the components. with the eventual goal of real-time,

mobile vision systems. While the main computational engine of our Vision Machine is the Connec-

tion Machine. which is a very powerful and flexible SIMD computer, specific VLSI implementations

will attempt to tradeoff computational flexibility for faster performance and higher degree of in-

tegration. A VLSI implementation of our Vision Machine can offer significant improvements in

performrance that would be difficult or impossible to attain by other methods. Presently, we are

specifically investigating the integration of charge coupled devices for photosensing and simple par-

allel computations, such as binomial convolution and patchwise correlation. In particular, Woody

Yang has developed and fabricated CCDs circuits for signal processing and imaging, described some

basic operations and how those operations can be combined into a CCD processor architecture for

vision. A circuit for performing Laplacian-of-Gaussian filtering of the image has been sent to fab-

rication. The paper discusses other CCD circuits for the integration-reconstruction stage of the

Vision Machine and for stereo.

4 Learning

Poggio and Girosi have recently obtained what we believe is a satisfactory understanding of the

learning obtained by "neural" networks such as backpropagation. In the last Proceedings we

had drawn a formal analogy between simple forms of learning and hypersurface reconstruction.

As a consequence, learning can be achieved by techniques such as regularization and therefore

generalized splints. The connection, however, between these classical methods and feedforward

networks of the backpropagation type remained unclear. Poggio and Girosi have now found that

the missing link is provided by the approximation method of Radial Basis Functions. The Radial

Basis Function approximation method has a sound theoretical basis and a direct interpretation in

term of a feedforward network with one "hidden" layer. Poggio and Girosi have been able to prove

its connections to generalized splines, to regularization techniques and to Bayes' approaches. They

have developed several new extensions of the method and indicated how to address a few general

issues in networks and learning within its formal framework (Girosi and Poggio, 1989, 1990)

We describe briefly the interpolation and approximation technique called Radial Basis Functions,

hich I ls beeft used in the past for surface interpolation with very promising results; clearly surface

reconstruction is another application of this technique of interest to vision research.

30



4.1 Radial Basis Functions

Given a set D = {(.i, 9 ) E R x Rli = 1....N) of data to interpolate, the Radial Basis Function

method corresponds to choosing the form of the interpolating function as

N

F(.F) = Zcih(11F- .F,112)
i= I

whv.re h is a smooth univariate function defined on [0, oo) and II is a norm on R". This formula

means that the interpolating function is expanded on a finite N-elements basis that is given from

the set of functions h translated and centered at data points. The N unknown coefficients of the

expansion can be recovered imposing the interpolating conditions F(Fij) = K. This gives the linear

system

N

= cih(II.[j - g,112) j = .
i=l

Defining the vectors f, 'and the symmetric matrix H as follows

(IF)i = Yj, (c)i = ci, (H) j = h(Il.j - i12)

we obtain

3= H- 1Y

provided H is invertible. The invertibility of H depends on the choice of the function h. In fact

Micchelll proved the following theorem, that defines a class of functions that we can choose to form

the basis:

Theorem 4.1.1 Let G be a continuous function on [0, oo) and positive on (0, oo). Suppose its

first derivative is completely monotonic but not constant on (0, oo). Then for any distinct vectors
El,..., iv E Rn

(1)n-leGI -'.112) > 0

The interpolation conditions can be weakened if the number of knots is made lower than the

number of data and their coordinates are allowed to be chosen arbitrarily. In this case, denoting

with t1 ,...,t*K the coordinates of the K knots (K < N) the interpolation conditions give the linear

system Y = H" where (H)i, = h(I i ii2) (i = 1,...,N and a = 1,...,K). The matrix H being

rectangular (N x K), this system is overconstrained and the problem must be then regularized
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to obtain a reasonable set of coefficients for the expansion. A least-squares approach can then be

adopted and the optimal solution can be written as

where H+ is the Moore-Penrose pseudo-inverse. In the overdetermined case, one has

H+ = (HTH)-Hr.

As in the previous case this formulation makes sense if the matrix HTHJ is non singular. Micchelli's

theorem is still relevant to this problem, since Poggio and Girosi proved the following corollary:

Theorem 4.1.2 Let G be a function satisfying the conditions of Micchelli's theorem and

XN...,Ev a N-tupla of vectors in R1. If H is the (N - s) x N matrix 11 obtained from the matrix

Gij = G(I.F ' - . jI2) deleting s arbitrary rows, then the (N - s) x (N - s) matrix H TH is not

singular.

The first layer consists of "input" units whose number is equivalent to the number of independent
variables of the problem. The second layer implements the set of radial basis function and its

number of units is equal to the number of knots. The units of the second layer are in general fully
connected to the units of the first one. The third layer consists of one unit (for a scalar function)

connected to all the units of the second layer and computing a weighted sum of their outputs. The
weights are the coefficients of the radial basis expansion and are the only unknown of the problem.

Since spline interpolation can be implemented by such a network, and spline are known to have
a large power of approximation we have then shown that a high degree of approximation can be

obtained by just one hidden layer network.

4.2 An extension: Generalized Radial Basis Functions

Poggio and Girosi noticed that the knots of the radial basis expansion have been kept fixed, the
weights being the only unknowns. To make the method more flexible they propose to consider even

the knots as unknowns and to look for the configuration of weights and knots that minimizes the

least square error on the data. The problem consists then in finding the values of the coefficients

ci and knots F. that minimizes the function

N K

E = (i - E ch(llF - '112))1 .

i=1 C1=1

A gradient-descent approach can be adopted to find the solution to this problem. The values of

ca and r,1 are then regarded as the coordinates of the stable fixed point of the following dynamical

system:
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OE

OE

where w is a parameter determining the microscopic timescale of the problem and is related to the
rate of convergence to the fixed point. Defining the interpolation error as

A: = Y- Z ch(I:i'V- i 1 2)

we can write the gradient terms as

LW N
O~t= -Zi~ ~-ij 2

-- = 4c,, ,h'l,- i'Il 2)( i - F)

where h' is the first derivatives of h. Equating DE to zero we notice that at the fixed point the
knot vectors F., satisfy the following equation:

where Pj* = Aih'(li - ,,I12). The optimal knots are then a weighted sum of the data points. The
weight Pc' of the data point i for a given knot a is high if the interpolation error Ai is high there

and the radial basis function centered on that knot changes quickly in a neighbor of the data point.

4.3 RBF are equivalent to regularization

Interesting connections between RBF and regularization techniques arise when the basis function
are chosen to be Gaussian. Let us consider the RBF method in its original formulation, having
chosen the basis function to be a Gaussian G. The coefficients of the expansion are the solution of
the linear system 1P = G" where (G)ij = G(II,l - .J 112). If data are noisy a well known technique
[65] to regularize the solution is to substitute the previous linear system with the following

1Y = (G + AI)F
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where A is a small parameter and I is the identity matrix. We now show that the same approxi-

mating function can be obtained from a pure regularization approach. Let us consider the following

functional

CoE1[FJ = Z-(Y - F(£i))2 + A /dx. j (L(DmF(,Xi))2

m=0

where ,\ is a parameter, D2m 
- V2 n, D2m+l = fV2m, V2 is the Laplacian operator and the

coefficients am are to be chosen. It can be easily proved that by posing am = 2 the functionmy!2'n
that minimizes this functional can be written as

N
F(i) = ciG(II - .i1 2) (1)

t=l

where G is a Gaussian of variance o, and the coefficients satisfy the linear system 1' = (G + AI),

that is the same as before. So in this case RBF and regularization are equivalent. Notice that

changing the coefficients an is equivalent to select;ng another basis function h instead of G. In fact
it can be shown that the set a.r and h are related by the following distributional partial differential

equation:

0

m=O

The stabilizer described above is not the most general one. Other types could have been chosen,

depending on the a priori information about the surface to be reconstructed. The previous one is

suitable if we want to keep local the interaction between a data point and its neighbors, since the

Gaussian falls off very quikly, that is the "interaction" is short range. It can be shown that this is
related to the presence of a term of degree zero in the stabilizer. For example, in two dimensions,

if we chose a stabilizer like

dxy 0F2+ ( ,2F \2 +/(2F\)2 1

dxd [( XF2 2~~ y ey )
this leads to a Radial Basis Function of the type h(ll ll2) = IIlj2logll ll. This kind of interaction
is clearly long-range, as it should be, since the corresponding functional is the bending energy of a

thin plate of infinite extent (Duchon and Meinguet gave the name thin plate splines to the solution

of the interpolation problem obtained minimizing this functional).

The same kind of results can be obtained in a third way, in the networks framework. Let us consider

the network and the problem of finding the "synaptic" weights. I we adopt a least square criterion
we recover the usual linear system V = G, but often it is considered an advantage to keep the

connections from growing to infinity, and so the following functional is minimized:
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N

E2[F] = - ZciG(I - E,11 ))2 + A ?
i i=1i

where the last term gives an high price to the configurations in which some coefficient ci is very high.
It is immediate to see that the minimization of this functional leads to the solution of the linear
system Y = (G + ,\I). This shows the equivalence between some of the "new" neural networks
techniques and classical regularization.

5 Other Work

5.1 Labeling the physical origin of edges: computing qualitative surface at-

tributes

Physical Discontinuities

We classify edges according to the following physical events: discontinuities in surface properties,
called mark or albedo edges (e.g., changes in the color of the surface); discontinuities in the orienta-
tion of the surface patch, called orientation edges (e.g., an edge in a polyhedron); discontinuities in
the illumination, called shadow edges; occluding boundaries, which are discontinuities in the object
space (a different object); and specular discontinuities, which exist for non-Lambertian objects.

Gamble, Geiger, Poggio, and Weinshall have implemented a part of the general scheme [18]. More
specifically, they have used a simple linear classifier to label edges at pixels where there exists an
intensity discontinuity, using the output of the line process associated with each low-level vision
module. They use the fact that the modules' discontinuities are aligned, having being integrated
with the intensity edges before, so that the nonexistence of a module discontinuity at a pixel is

meaningful. The linear classifier corresponds to a linear network where each output unit is a
weighted linear combination of its inputs (for a similar application to a problem of color vision, see
[36]). The input to the network is a pixel where there exists an intensity edge and that feeds a set

of qualitatively different input units. The output is a real value vector of labels' support.
In the system we have so far implemented, we achieve a rather restricted integration, since each

module is integrated only with the intensity module, and labeling is done via a simple linear classifier
only. It is still unclear how successfuli labeling can be, using only local information.
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5.2 Saliency, grouping and segmentation

A grouping and segmentation module working on the output of the edge detection module is an

important part of a vision system: humans can deal with monocular, still, black and white pictures

devoid of stereo, *motion and color. We are now developing techniques to find salient edges, to

group them and thereby segment the image. These algorithms have not been integrated yet in the

Vision Machine system.

5.2.1 Saliency Measure

Edge maps produced by nost current edge detectors are cluttered with edge responses and may have

edges caused by noise. This creates difficulties for higher level processing, since the combinatorics of

these algorithms often depends on the number of edge primitives being examined. What is needed

is a technique to focus attention on the "important" edges in a scene. We call such attention

focusing techniques that measure the "importance" of an edge saliency measures. Shimon Ullman

has proposed two different kinds of saliency measures: local saliency and structural saliency. An

edge's local saliency is entirely determined by features of that edge alone. For example, an edge's

length, its average gradient magnitude, or the color of a bounding region serve as local saliency

measures. Structural saliency refers to more global properties of an edge - its relationships with

other edges. Although two edges may not be locally salient, if there is a "nonaccidental" relationship

between them, then the structure becomes salient. Examples of "nonaccidental" relationships, as

pointed out by David Lowe, include collinearity, parallelism, and symmetry, among other things.

We have investigated local saliency measures applied to the output of the Canny edge detector

(Beymer, in preparation). The edge features we have considered include curvature, edge length,

and gradient magnitude. The measure favors those edges that have low average curvature, long

length, and a high gradient magnitude. The saliency measure eliminates many of the edges due

to noise and many of the unimportant edges. The edges that remain are often the long, smooth

boundaries of objects and significant intensity changes inside the objects. We expect that the

salient edges will help higher level processes such as grouping (structural saliency) and model

based recognition by allowing them to focus attention on regions of an image bounded by salient

edges.

5.2.2 T Junctions: Their Detection and Use in Grouping

In cluttered imagery, imagery ,.ontaining many objects occluding one another, it is important to

group together pieces of the image that come from the same object. In particular, given an edge

map produced by the Canny edge detector, we would like to select and group together the edges

from a particular object before running high level recognition algorithms on the edge data. This
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grouping stage helps reduce the combinatorics of the higher level stages, as they are not forced to

consider false edge groupings as objects. Considering how occlusion cues can be used in grouping,

we have investigated the detection of T junctions and grouping rules arising from the pairing of T

junctions. When one object partially occludes another in a cluttered scene, a T junction is formed

between the two objects. David Beymer has developed algorithms for detecting T junctions as a

postprocessing step to the Canny edge detector. The Canny edge detector, while very good at

detecting edges, is particularly bad at detecting junctions. Indeed, it was designed to detect one

dimensional events. This one dimensional characterization of the image breaks down at junctions

since locally there are three or more surfaces in the image. We have investigated how one could use

edge curvature and region properties of the image to reconstruct these "broken" junctions. Often

the way Canny will fail at junctions is that one of the three curves belonging to the junction will be

broken off from the other two. We have modified an existing algorithm asnd achieved promisisng

results in restoring broken T junctions. Once located in the image, T junctions are represented by

three edges, the left part of the top horizontal edge of the T, the right part, and the stem. The

top horizontal edges are the occluding edges and the vertical stem is the occluded edge. Given

the junctions, we can start pairing T junctions and grouping edge fragments. If we assume that

all objects in the scene fit entirely within the image boundaries, all T junctions must be matched

up with a "brother" T junction along the occluded edge joining them. This constraint helps to

classify T junctions, making their detection more robust. Once a T junction is matched with its

brother, we know exactly which edge is the occluded edge (it is the edge that is traced to reach the

brother), so we can group the two occluding edges together. The occluded edge will be extended,

starting a search process to bridge the occluding object. Here we are looking for an opposing T

junction on the other side of the occluding object. If such a pair of opposing Ts is found, we can

group together the occluded edges of the respective T junctions. The application of these grouping

rules for occluding and occluded edges often product closed contours when the Canny edges are

fairly good. For each closed contour, we can form a closed region corresponding to an object or

object part in the image. Finally, the T junctions are used to calculate relative depth information

among the regions. In the end, the system can divide the image into regions corresponding to

objects and give their relative depths. The algorithm is presently working on "toy" images made

from construction paper cutouts and has not been integrated in the Vision Machine system.

5.3 Fast Vision: The Role of Time Smoothness

The present version of the Vision Machine processes only isolated frames. Even our motion algo-

rithm takes as input simply a sequence of two images. The reason for this is, of course, limitations

in raw speed. We cannot perform all of the processing we do at video rate (say, 30 frames per

second), though this goal is certainly within present technological capabilities. If we could process
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frames at video rate, we could exploit constraints in the time dimension similar to the ones we

are already exploiting in the space domain. Surfaces, and even the brightness array itself, do not

usually change too much from frame to frame. This is a constraint of smoothness in time, which is

valid almost everywhere. but not across discontinuities in time. Thus one may use the same MRF

technique, applied to the output of stereo, motion, color, and texture, and enforce continuity in

time (if there are no discontinuities), that is, exploit the redundancy in the sequence of frames.

We believe that the surface reconstructed from a stereo pair usually does not need to be recomputed

completely when the next stereo pair is taken a fraction of a second later. Of course, the role of

the MRFs may be accomplished in this case by some more specific and more efficient deterministic

method such as. for example, a form of Kalman filtering. Notice that space-time MRFs applied to

the brightness arrays would yield spatioteniporal interpolation and approximation of a kind already

considered (Fahle and Poggio, 1980; Poggio, Nielsen, and Nishihara, 1982; Bliss. 1985).

5.4 Parameter Estimation in the MRF integration stage

Using the MRF model involves an energy function which has several free parameters, in addition to

the many possible neighborhood systems. The values of these parameters determine a distribution

over the configuration-space to which the system converges, and the speed of convergence. Thus

rigorous methods for estimating these pazameters are essential for the practical success of the

method and for meaningful results. In some cases, parameters can be learned from the data: e.g.,

texture parameters (Geman and Graffigne, 1987), or neighborhood parameters (for which a cellular

automaton model may be the most convenient for the purpose of learning). There are general

statistical methods which can be used for parameter estimation:

* A maximum likelihood1 estimate - one can use the indirect iterative EM algorithm

(Dempster et.al., 1977), which is most useful for maximum likelihood estimation from

incomplete data (see Marroquin, 1987 for a special case ). This algorithm involves the

iterative maximization (over the parameter space) of the expected value of the likelihood

function given that the parameters take the values of their estimation in the previous

iteration. Alternatively, a search constrained by some statistics for a minimum of an

appropriate merit function may be employed (see Marroquin, 1987).

a A smoothing (reaularizat4i cn parameter can be estimated using the mefhods of

cross-validation or unbiased risk, to minimize' the mean square error. In cross-validation, an

estimate is obtained omitting one data point. The goal is to minimize the distance between

the predicted data point (from the estimate above with the point omitted) and the actual

value, for all points.
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In the case of Markov Random Fields, some more specific approaches are appropriate for parameter

estimation:

1) Besag (1972) suggested conditional maximum likelihood estimation using coding methods, maxi-

mum likelihood estimation with unilateral approximations on the rectangular lattice, or "maximum
pseudolikelihood" - a method to estimate parameters for homogeneous random fields (see Geman

and Graffigne, 1987).

2) For the MPM estimator, where a fixed temperature is yet another parameter to be estimated, one

can try to use the physics behind the model to find a temperature with as little disorder as possible

and still reasonable time of convergence to equilibrium (e.g., away from "phase-transition").

An alternative asymptotic approach can be used with smoothing (regularization) terms: instead of

estimating the smoothing parameter, let it tend to 0 as the temperature tends to 0, to reduce the

smoothing close to the final configuration (see Geman and Geman, 1987).

In summary, we plan to explore three distinct stages for parameter estimation in the integration

stage of the Vision Machine:

Modeling (from the physics of surfaces, of the imaging process and of the class of scenes to
be analyzed and the tasks to be performed) and the form of the prior and of some

conditional probabilities involved (e.g., the type of physical edges from properties of the

measurements, such as characteristics of the brightness data). Range of allowed parameter
values may also be established at this stage (e.g., minimum and maximum brightness value

in a scene, depth differences, positivity of certain measurements, distribution of expected

velocities, reflectance properties, characteristics of t'e illuminant, etc.).

" Estimating of parameter values from set of examples in which data and desired solution are

given. This is a learning stage. We may have to use days of CM time and, at least initially,

synthetic images to do this.

" Tuning of some of the parameters directly from the data (by using EM algorithm,

cross-validation, Besag's work, or various types of heuristics).

Tie dream is that at some point in the future the Vision Machine will run all the time, day and

night, looking about and learning on its own to see better and better.

5.5 Object Recognition

In earlier reports, we have described a series of approaches to the problem of model-based object
recognition, based on matching object shape. Our work has proceeded along a number of fronts.
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5.5.1 Recognition from Matched Dimensionalities

Earlier reports described the work of Grimson and Lozano-P6rez on the recognition of occluded

objects from noisy sensory data under the condition of matched dimensionality [29]. Specifically, if

the objects to be iecognized and localized are laminar and lie on a flat surface, or if the objects are

volumetric but lie in stable configurations on a flat surface, then the sensory data need only be two-

dimensional (e.g. a single image); if the objects to be recognized and localized are volumetric and

lie in arbitrary positions, then the sensory data must be three dimensional (e.g. stereo or motion

data, laser range data). The original technique (called RAF) was designed to recognize polyhedral

objects from simple measurements of the position and surface orientation of small patches of surface.

The technique searches for consistent matchings between the faces of the object models and the

sensory measurements, using constraints on the relative shape of pairs of model faces and pairs of

measurements to reduce the search.

Our empirical work on RAF has advanced along a number of dimensions. First, we have shown that

,the RAF framework can successfully recognize and locate objects based on a variety of geometric

features: edges, vertices, curved arcs, planar surface patches, and axes of cylinders and cones.

Second, we have also shown th at such features can be extacted from a range of sensory information,

including grey level image3, stereo data, motion data, senar returns, laser striping data and tactile

data. Third, we have shown that, the RAF framework can be extended to deal with some classes

of parameterized objects. These include the recognition of objects that can scale in size, the

recognition of objects that are composed of rigid subparts connected through rotational degrees

of freedom (e.g. a pair of scissors) and the recognition of objects that can undergo a stretching

deformation along one axis.

Our empirical experience with RAF suggested that the method was remarkably efficient when

dealing with data from a single object, but was inefficient when spurious data was included. To

overcome this, we have incorporated a Hough transform to preselect portions of the search space

on which to focus attention, and we have used thresholds on the goodness of an interpretation to

terminate search. The combination of these two techniques resulted in dramatic improvement in

the efficiency of the search method. Based on these observations, we have been developing a formal

basis for explaining these results. In particular, we have shown the following formal results:

o If all of the data is known to have come from a single object, the expected amount of search

is quadratic in the number of data and model features.

o If spurious data is included, the expected amount of search is a combination of polynomial

in the number of data and model features, but exponential in the size of the actual correct

interpretation.

o Us.ng a Hough transform to preselect subspaces of the search space reduces the values of
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the parameters in the complexity bounds, but still leaves an exponential problem.

Using premature termination of search based on a threshold on a "good" interpretation

reduces the expected search. In particular, if the scene clutter is small enough relative to

the noise in.the data, the expected search becomes polynomial, otherwise it is a low order

exponential.

To support the use of Hough transforms and premature termination of search, Eric Grimson and

Daniel Huttenlocher have executed a formal analysis of these methods [28]. They have derived

formal characterizations for the probability of false positives in the TIou'h space, as a function of

the noise in the data and the characteristics of the Hough transform. These results provide a means

of evaluating the efficacy of the Hough transform, and suggest that one should not, in general, rely

on the Hough transform to fully solve the recognition problem, but rather that one should use

it as a preprocessor, selecting out small subspaces within which the RAF method can be applied

effectively. The results support the empirical observations concerning the reduction in search.

Grimson and Huttenlocher have also developed a formal characterization of thresholds for termi-

nating search, relating analytic bounds on such thresholds to expected probabilities of errors. These

formal results have been shown to agree with empirical evidence from several recognition systems.

Much of our earlier work with the RAF recognition system dealt with robotics environments and

the recognition of industrial parts. We have continued this effort by integrating RAF into the

HANDEY task-level planning system of Lozano-Prez. We have also continued a pilot study of

applying the technique to a very different domain, underwater localization. Specifically, we have

considered the problem of determining the location of an autonomous underwater vehicle by match-

ing sensory data obtained by the vehicle against bathymetric or other maps of the environment.

Sensor modalities include active methods such as sonar, and passive methods such as pressure read-
ings and doppler data from passing ships. We have conducted some early simulation experiments

using RAF, together with strategies for acquiring sensory data to solve this localization problem,

with excellent results.

Our formal analysis and our empirical experience both argue that the RAF approach to recognition

fails to adequately deal with the issue of segmentation of the data into subsets that are likely to

have come from a single object. While the Hough transform can help reduce this problem, it

is model driven, and hence potentially very expensive when applied to large libraries of objects.

As an alternative to this, David Jacobs has directly addressed the issue of generic grouping in

an image [38]. Jacobs has derived r, 's for determining the probability that a set of edge

fragments in an image is likely to have come from a single object. These measures consider simple

measurements such as the separation of groups of edges, and the relative alignment of groups of

edges. The recognition system, since it does not directly consider the object model, may occasionally

be incorrect. However, tests of the system on a variety of images of two-dimensional and three-
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dimensional scenes shows a remarkable and dramatic reduction in the search required to recognize

objects from a library, and also is quite effective at identifying groups of edges coming from a single

object. The effect of this grouping mechanism is particularly apparent when applied to libraries of

objects, since the parameters computed by the grouping scheme can be used to do effective indexing

into a library.

We have also continued to investigate the use of parallel architectures, such as the Connection

Machine, to obtain significant performance improvements. Todd Cass has completed the develop-

ment and implementation of a parallel recognition scheme for two dimensional scenes, on which he

reported in the 1988 Proceedings . The system uses a careful Hough transform method. followed

by a sampling scheme in the parameter space to find instances of an object and its pose. Typical

performance of the method involves the correct identification and localization of heavily occluded

objects, in scenes in which a large number of other parts are present, in under five seconds, using

a 16K processor configuration of the Connection Machine. More recent work - mentioned earlier -

has focused on integrating this recognition method with data provided by the Vision Machine.
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